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Abstract- We consider the image fusion problem involving 
remotely sensed data. We introduce cokriging as a method 
to perform fusion. We investigate the advantages of fusing 
Hyperion with ALI. This evaluation is performed by comparing 
the classification of the fused data with that of input images and 
by calculating well-chosen quantitative fusion quality metria. We 
consider the Invasive Species Forecasting System (ISFS) project 
as our Fusion application. The fusion of ALI with Hyperion 
data is studied using PCA and wavelet-based fusion. We then 
propose utilizing a geostatistical based interpolation method 
called cokriging as a new approach for image fusion. 

Znden Terns- Image Fusion, Cokriging, Wavelet, PCA, Re- 
mote Sensing, Hyperion, ALI 

I. INTRODUCTION 

In the remote sensing domain, image fusion is a technique 
which deals with the limitations of sensors in capturing high 
spectralhpatial resolution multispectral images [ 11. In this 
paper, we study fusion of two remotely sensed data sets 
(ALI and Hyperion) using PCA and wavelet-based fusion. 
We also propose a new image fusion approach based on 
cokriging [2]-[4]. Cokriging is an interpolation method for 
a variable available at scattered data points using multiple 
variable values of different natures. at nearby locations, and 
thus we found it suitable in addressing datdimage fusion 
needs. We perform preliminary experiments for fusion based 
on cokriging using our given data sets as a preliminary proof 
of concept experiment. 

The goal of our project is to eventually evaluate our fusion 
results by performing classification of the fused data and 
by measuriog the classification accuracy using ground truth 
from the ISFS application. In the absence of ground truth 
we consider other quantitative quality metrics. In this paper, 
we study the advantages of fusing Hyperion bands with their 
corresponding ALI bands by studying the amount of details 
gained. We also mention problems that need to be addressed 
when designing future fusion metrics. 

In Section 11 we give an overview and definition for data 
and image fusion. Then, in Section III we give an overview of 
our application project, ISFS, and its objectives. We describe 
the data sets used for our experiments in Section JY. In 
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Sections V and VI the fusion methods used in our experiments 
are described. We mention evaluation methods we considered 
for our experiments’ results in Section VII and present the 
results in Section VIII. After explaining the advantages and 
limitations of the used fusion methods, we give an overview 
of the cokriging interpolation method in Section V-C, propose 
it as a new approach for data fusion, and perform preliminary 
tests on our data set. Finally, we give conclusions and overview 
of our future work in Section IX. 

11. DATA AND IMAGE FUSION 
Data fusion was originally defined as a group of methods 

and approaches using multi-source data of different natures 
to increase the quality of information contained in the data 
[5] .  This and other similar definitions were considered rather 
restrictive later. More recent definition of data fusion describes 
it as “a process dealing with the association, correlation, and 
combination of data and information from single and multiple 
sources to achieve refined position and identity estimates, and 
complete and timely assessments of situations and threats, 
and their significance” [6]. Thus, while the original definition 
conveys the idea of the combination of data, the new definition 
also considers the study of correlation among data of different 
sources t,o generate and evaluate hypothesized associations 
among data [6], and in fact this is the definition we are 
considering for data fusion in this paper by studying the 
relationship between ALI and Hyperion data through image 
fusion. 

Image fusion refers to data fusion where the data used 
are images of multiple sources. There are many objectives of 
image fusion including image sharpening, improving registra- 
tiodclassification accuracy, temporal change detection, feature 
enhancements, etc; [5].  In this paper, our objective for image 
fusion is the improvement of classification accuracy for our 
target application (ISFS, see Section III) as well as feature 
enhancement which can lead to better classification. 

111. ISFS: INVASIVE SPECIES FORECASTING SYSTEM 
Our underlying application involves the analysis of invasive 

species through a collaborative project among NASA Office 
of Earth Science and the US Geological Survey called Inva- 
sive Species Forecasting System (ISFS) [7], [8]. An invasive 



species is defined as any non-native species whose introduction 
causes or is likely to cause harm to the economy, environment, 
or to human health. The economic damages caused by invasive 
species to agricultural producers and commercial fishery alone 
run to billions of dollars each year [8]. Tamarisk, Russian 
olive, leafy spurge, and water hyacinth are examples of various 
invasive species under study. The data sets used in this paper’s 
experiments are from one of the four main Tamarisk study sites 
here in Colorado. 

While many vegetation types may appear to have the 
same color when viewed in the visible spectrum, they can 
be differentiated from each other when viewed in the infra- 
red or ultra violet spectra [9]. Even when viewed in the 
non-visible spectrum, reflectance of these vegetation types 
may be of different degrees and from nearby portions of 
the spectrum. For this reason hyperspectral data is of great 
importance to the ISFS project. However, one would need to 
choose its appropriate bands for a particular study based on 
the application. In this paper we try to investigate candidate 
choices for Hyperion bands to be used for the ISFS project 
by learning the amount of detail that they introduce to the 
classification compared to their corresponding ALI bands. 

IV. DATA SETS 
Our data sets were acquired in July 5,2004 from “Debeque” 

(near Grand Junction, Colorado, U.S.A) site which is one 
of the four study sites for ISFS’s Tamarisk mapping effort 
[7]. The Advanced Land Imager (ALI) and Hyperion are two 
instruments on the Earth Observing 1 (EO-1) platform. Hy- 
perion is a hyperspectral instrument with 242 bands covering 
wavelengths ranging from 356 nm to 2577 nm at a spatial 
resolution of 30 meters per pixel. ALI on the other hand, has 
only 10 bands, one of which is panchromatic at 10 meters 
spatial resolution and 9 of which are multispectral at a 30 
meters spatial Tesolution, covering wavelengths ranging from 
433 nm to 2350 nm. Thus, ALI data represent low spectral res- 
olution data while Hyperion provides high spectral resolution 
images. ALI is considered a successor system to the Landsat 
Thematic Mapper series, and thus 5 of its multispectral bands’ 
wavelengths correspond to that of Landsat 7. Hyperion is the 
only civilian hyperspectral instrument operating in space. 

For this paper, we used two data sets one obtained from ALI 
and one from Hyperion instrument, containing approximately 
the same area. We had the 9 multispectral bands of ALI as 
well as all Hyperion bands for the region under study. 

Our objective of performing various image fusion tech- 
niques on two images, one with low spectral resolution and 
one with high spectral resolution, is to study how much we 
can improve the quality of the classification pedormed on a 
Landsatnandsat type image using hyperspectral data. Having 
both ALI and Hyperion on the same platform reduces temporal 
effects on registration accuracy greatly. 

The ALI data were georeferenced, while the Hyperion 
data did not have any associated map information. Thus, we 
registered Hyperion data to ALI, using ALI as our reference 
image. We performed registration in a two step process: 

TABLE I 
ALI AND MATCHING CALIBRATED AND NOT CORRUPTED HYPERION 

BANDS USED (CWL = CENTRAL WAVELENGTH) 

ALI 
Ms 

Bands 

1 
(MS-1’) 

2 
(MS-1) 

3 
(MS-2) 

4 
(Ms-3 1 

5 
(MS-4) 

6 
(MS-4‘) 

7 
(Ms-5’) 

8 
(Ms-5) 

9 
(MS-7) 

Hyperion 
Bands 

I I 11 

... 
25 
28 - ... 

630-690 I 660 I 31 
... I 33 

I I 42 
- 43 

775-805 I 790 I 44 I 45 
I I 49 

- 50 
845-890 1 865.6 I 51 

... 

... 
115 
141 . 
... 

1550-1750 I 1640.1 I 149 
... 
- 160 
- 195 

208 

CWL 
(nm) 

436.99 
447.17 

457.34 
... 

487.87 
498.04 
508.22 
528.57 ... 
569.27 
579.45 

... 
599.80 
630.32 

... 
660.85 

681.200 
772.78 
782.95 
793.13 
803.30 
844.00 
854.18 
864.35 

884.70 
1205.07 

1245.36 

... 

... 

... 

... 
1295.86 
1558.12 

... 
1638.81 

... 
1749.70 
2102.94 

2173.53 
2193.73 

... 

... 
2224.03 
2234.12 
2264.32 

first we obtained the transformation and rotation parameters 
using the algorithm mentioned in [lo], which is based on 
optimization of mutual information between two images. First 
we applied the obtained transformations and rotations on the 
Hyperion data to obtain a registered Hyperion to ALI image. 
Then, we refined the registration using E M  3.5 [ll] using 
nearest neighbor linear interpolation and by manual selection 
of ground control points. Then, we chose a subset of size 
384 x 128 from both ALI and Hyperion data sets. Thus, we 
have 242 bands of Hyperion and 9 bands of ALI, all from the 
same location and of the same size. 



V. APPROACH Fig. 1. Wavelet-Based Fusion 

WaMM-&w,SWM Frlsiorr In this section we go over three image fusion techniques we 
used in om study of fusion of ALI and Hyperion. Two well 
known methods for image fusion are PCA and wavelet-based 
fusion. We also go over details of cokriging as an interpolation 
method and propose using it for image fusion. 

A. PCA 

Principle Component Analysis (PCA) is a statistical tech- 
nique that transforms a multivariate data set of inter-correlated 
variables into a data set of new uncorrelated linear cornbi- 
nations of the original variables [5J. There are two ways of 
using PCA for image fusion: one approach is concerned with 
fusion of one multispectral data with an image with higher 
spatial resolution. The second approach considers fusion of 
images with the same spatial resolution [5], [12]. In the latter 
approach, images are stacked together as one multispectral 
image, and PCA is performed on all of the concatenated data. 
We use the second approach of using PCA for image fusion 
in this paper. 

B. WaveEet-Based Fusion 

Briefly, a wavelet decomposition of any given signal (1-D 
or 2-D) is the process that provides a complete representation 
of the signal according to a well-chosen division of the time- 
frequency (1 -D) or space-frequency (2-D) plane [ 131. Through 
iterative filtering by low-and high-pass filters, it provides 
information about low- and high-frequencies of the signal at 
successive spatial scales. For fusion purposes, multi-resolution 
wavelet decomposition separates high- and low-frequency 
components of the two given data sets and these components 
are then recomposed differently in the reconstruction phase. 

In our experiments, we are using a Daubechies filter [13] 
of size 2 and a Mallat Multi-Resolution Analysis (MRA) [ 141 
decomposition and reconstruction scheme. Figure 1 illustrates 
the wavelet-based fusion idea, where high- and low-resolution 
data are independently decomposed using the MRA wavelet 
decomposition process. Then, components from both decom- 
positions are combined during the reconstruction phase to 
create the new fused data. In this scheme and similar to [ 151, 
where different spatial resolution data are fused, we fuse the 
different spectral resolution data in the following manner: low- 
frequency information of the lowest spectral resolution data 
(e.g., ALI data) is combined with high-frequency information 
of the highest spectral resolution data (e.g., Hyperion data). 
In our experiments, the same Daubechies filter size 2 is used 
for both decomposition and reconstruction phases and for both 
types of data. 

C. Cokriging 

We first give an overview of the cokriging interpolation 
method, and then propose utilizing this method for data fusion. 

OecomDosiuon Y 

c 

I )  Cokriging as an Interpolation Method: Cokriging has 
been traditionally used in mining and geostatistics appli- 
cations [2]-[4]. Cokriging is a method for estimation that 
minimizes the variance of the estimation error by taking into 
consideration the spatial correlation between the variables 
of interest and the secondary variables. In other words, a 
function U at location 0 is estimated as a linear combi- 
nation of both the variable of interest and the secondary 
variable(s). That is, in the case where we have one sec- 
ondary variable, the estimate of U at location 0, 00, using 
the two variables as mentioned in [4], is given by 00 = 
Cy=l~ui + Cj"=lbjvj, where u1,uz ,..., un are primary 
data at n nearby locations, VI, v2,. . . , Vn are secondary data 
at rn nearby locations, and al,  a2, . . . ,a, and bl, bar.. . , bm 
are cokriging weights which are needed to be found and 
c_alculated. The estimation error, R, is calculated as R = 
UO - UO = wtZ, where wt = (a1,. . . ,an, bl,. . . , bm, -11, 
and @ = (Ul, -. . , Vi, Vi, . . . , Vm, 770). The goal of cokriging 
is to find the weight vector wt such thatAthe variance of the 
error is minimized and the estimate for UO be unbiased, that 
is, the mean error residual is zero. 

. There are various types of cokriging methods. The distinc- 
tion arises from the way in which constraints are imposed. 
Three common types of cokrigingA are: ordinary, simple, 
and standardized cokriging (see [3], p. 204, and [4], ch. 17). 
Here we illustrate the ordinary cokriging. Ordinary cokriging 
requires that Cy=l ai = 1 and bj = 0 in the above 
equation. These two constraints are there to make our estimate 
unbiased, or to minimize the variance of our estimation error. 

m 



From the definition of variance, we have 

Vir(R) = uttCzw 
n n  

i j  
m m  

i j  
n m  n 

+ 2 C C  COV(U~V~) - 2 x a i c o v ( ~ i ~ o )  
i j  i 

m 
- ZCbjC~v(v jUo)  + COV(UOUO). 

i 
We leave the proof of why the two mentioned constraints en- 

sure unbiasedness of our estimate as an exercise for the reader. 
So now we have an optimization problem with two constraints. 
This is where we take advantage of Lagrange multipliers [16]. 
Let our Lagrange multipliers be p 1  and p2, Then, we are trying 
minimize VUT(R) subject to the two mentioned constraints by 
solving for coefficients a1 . . . an, bl . . . bm, pl, p2, where 

V k ( R )  = wtCzw + 2p1(Caj - 1) + 2 p 2 ( C  bj). 
n m 

i= 1 j=1 

The next step is taking partial derivatives of the above 
equation with respect to all n + m cokriging variables and 
the two Lagrange multipliers and setting them to zero. Then, 
we have the following n + m + 2 equations to solve: 

i= 1 i=l 
for (j = l...n), 

ra m 
xaiCov(Uivj)  + cbiCov(l4l.',) +p2 = Cov(U~vj) 
i=l i=l 

for (j  = l...m), 
n m 

= 1, a n d x b i  = 0. 
i=l i=l 

Once the above system of equations is solved, we have 
the necessary coefficients a1 , a2,. . . , a,, b1, b2, . . . , b, to es- 
timate function U at location 0. Note that the above mentioned 
method works only for point estimation. 

Instead of having one set of secondary variables VI . . . Vm, 
we may use multiple sets of secondary variables. Each addi- 
tional set of secondary variables W1. . . Wk will introduce a 
new set of coefficients c1. . . Ck and a new lagrange multiplier 
P W *  

For the general case where we have 8 set of variables (as 
oppose to just 2 sets, one primary and one secondary), our 
linear system will be as follows: 

, where C is the covariance (or its estimate) matrix of all 
known variables' pair, and CO is the vector of pairwise 

covariances between the unknown variable UO and all other 
known variables. 

p is the vector of all lagrange multipliers PI.. .,us. E is a 
vector of matrices I1 . . .Is, Each matrix Ii, i E (1 . .  . s) is of 
size (number of points in ith variable set) xs. All elements 
in the ith column of Ii are one and all other entries are zero. 

T is the vector of all coefficients, and IO is a column vector 
of of size s x 1 of all elements under CO on the right hand side 
of the equation. Similarly to ensure unbiasedness, this vector 
is made of a 1 on top and all zeros for the rest of entries. It 
can also be proven that in order for the above system to have 
a solution, we need C to be positive definite. 

2) Cokriging as a Fusion Method: While PCA and 
wavelet-based fusion have been traditionally used for image 
fusion, they have their own shortcomings. For PCA most 
information is gained if all calibrated and visually good quaIity 
multispectral input bands are used (rather than a selective 
subset). PCA results are also very sensitive to the selected area 
for fusion [5] .  Also, PCA is a general purpose approach and 
no application-oriented information is used for PCA. Wavelet 
based fusion can deal with images of different spectral and 
spatial resoIutions. However, this method cannot handle cases 
where data is scattered and rather sparse (either in spatial or 
spectra1 dimension), or when input images differ greatly in 
either their spectral or spatial resolutions. 

Thus, we think using cokriging can help us integrate data of 
various sources with different spatial and spectral resolutions 
according to the application in mind. Our image/data fusion 
problem is then considered as an interpolation problem where 
we want to estimate frequencies at missing data points for 
data with low spatial resolution, or re-estimate or come up 
with better frequencies for data points with lower spectral 
resolution. That is, we can perform cokriging as a fusion 
method either in spatial or spectral domain. 

In spatial domain, location values for our interpolation 
problem are either the geographic coordinates of data points 
or their pixel coordinates in high spatial resolution image. 
We will have two sets of variables in our problem to deal 
with: data with high spatial resolution and data with low 
spatial resolution. The first variable will have a value at almost 
all specified locations while the second variable will have 
missing values since it has lower spatial resolution. Our goal 
will be to come up with the missing values for the second 
variable through cokriging. That is we are increasing the 
spatial resolution of the image with lower spatial resolution. 

Similarly, when performing fusion in spectral domain, we 
have two sets of variables. One is our image with high 
spectral resolution and the other is the image with low spectral 
resolution which we want to improve. In this case, center 
of wavelength intervals of each data set serves as the loca- 
tiodcoordinate values. Each band of data with high spectral 
resolution will have a reflectance value at each interval while 
the low spectral data will have some missing values. 



VI. EXPERIMENTS 

In this section we go over details of the experiments we 
performed using three image fusion techniques for our study 
of fusion of ALI and Hyperion. 

A. PCA 

We performed fusion of ALI and Hyperion data using the 
PCA approach to see how the classification of the fused data 
would change with respect to classification of data when using 
only either the ALI or Hyperion data. To do so we performed 
3 series of PCA transformations on three sets of data: 

9 bands of ALI data. 
Calibrated bands of Hyperion which do not appear cor- 
rupted visually (total of 140 bands as shown in Table I). 

a All ALI bands and Hyperion bands mentioned above 
stacked together as one multi-spectral data set (we did 
not have to worry about their spatial resolutions since 
they all share the same spatial resolution). Thus, we had 
a data set with 149 bands. 

From each case’s resulted PCs, the first set of PCs is chosen 
is such a way that it contains at least 99% of the original data 
sets’ information content (defined as ratio of the sum of their 
eigenvalues to the sum of all PCs eigenvalues). 

B. Wavelet-Based Fusion 

TABLE I1 
RECOMMENDED HYPERION BANDS TO FUSE WITH EACH ALI BAND 

BASED ON CORRELATION VALUES*(C) 

Matching Hyp 

1 (MS-1’) 
2 (MS-1) 
3 (MS-2) 
4 (MS-3) 

6 (MS-4‘) 
7 (MS-5’) 
8 (MS-5) 
9 (MS-7) 

15 
25 
33 
45 
53 
113 
160 
198 

C 
Value 

0.861991 
0.859726 
0.843684 
0.83889 

0.782766 
0.773323 
0.7 7 2 6 3 4 
0.708357 
0.16961 

For wavelet based fusion we fused each band of ALI data is 
fused with one chosen Hyperion band whose wavelength range 
lies within that ALI band‘s wavelength range. That is each ALI 
band can be fused with one of many corresponding Hyperion 
bands. We performed two sets of wavelet based fusions based 
on how we chose the Hyperion band to be fused with each 
ALI band: 

In the first experiment, we chose Hyperion bands to be 
fused with ALI based on our target application. That 
is, from candidate Hyperion bands we selected the one 
among those whose wavelength shows a typical vegeta- 
tion reflectance in general, and a reflectance of vegetation 
types of interest to ISFS in particular, has the highest 
reflectance [7]. The 9 chosen Hyperion bands for fusion 
with 9 bands of ALI are underlined in Table I. 

In the second experiment, we choose bands that yields 
inputs with the highest variations, regardless of the appli- 
cation. That is from the list of Hyperion candidate bands 
for fusion with each ALI band, we chose the Hyperion 
band which is the least correlated to the corresponding 
ALI band. The chosen Hyperion bands for this experi- 
ment with their correlation values are shown in Table II. 

C. Cokriging 
Since both multispectral ALI and Hyperion data have the 

same spatial resolution, we can only perform fusion on the 
spectral dimension. That is, we can improve spectral quality of 
ALI by cokriging it with both ALI and Hyperion data. Looking 
at Table I, we can see there are some wavelength ranges which 
are not covered by ALI data. In particular, considering only 
calibrated bands of Hyperion which did not seem visually 
corrupted, wavelengths covered by Hyperion bands 17, 26- 
27, 34-41, 46-48, 54-105, 116-140, 161-194, and bands 220- 
224 are not covered by ALI bands. Thus, one could create 
8 new bands of ALI through cokriging, where each new ALI 
band will cover the missing intervals of the spectrum. Another 
fusion goal might also be to interpolate ALI only at a particular 
wavelength of interest, based on application. 

Fig. 2. ALI and Hyperion Reflectance in Their Spectral Domain 

wavelength (nm) 

Figure 2 shows the reflectance at one pixel both with the 
Hyperion and ALI sensors. Our experiments deal with esti- 
mating ALI values at missing intervals by using both ALI and 
Hyperion, and investigate how we can mimic Hyperion’s trend 
at wavelengths of interest for ALI. This is done by by first 
interpolating ALI at one wavelength location at each interval 
by estimating ALI values at wavelengths matching centers of 
wavelength ranges for Hyperion bands 17,26,37,47,77,134, 
and 180. In the second experiment, we get a smoother ALI 
coverage, by estimating ALI at wavelength centers of Hype- 
rion bands 17, 26, 37, 39, 47, 57,77,97,130,134,138,170,180, 
and 190. Finally, we examine how cokriging would perform 
if we were to reconstruct ALI at every single interval where 
we have Hyperion coverage. This demonstrates how cokriging 



performs for the spectral fusion of ALI with Hyperion. In 
practice, a user could specify the intervals in which heishe is 
interested to have ALI coverage based on the application, and 
thus only a few newifused bands will be constructed for ALI 
through this process. 

VII. EVALUATION METHODS 
Classification of fusion results and comparison with classi- 

fications obtained by using either ALI or Hyperion data is the 
ideal way of evaluating our fusion results for our ISFS project 
purposes. However, this would require ground truth data which 
is not yet available, although it should soon be acquired from 
field measurements. Thus, for this study, we use other spectral 
quality metrics. 

While there are a few fusion quality metrics introduced by 
[17], [18], they present some limitations in our experimental 
framework. In particular, the previous metrics only deal with 
data of gray scale with values between 0-255. Additionally, 
these measures do not handle multi-spectral data. 

Since texture is one of the main characteristics usually 
used for classifying images [19], [20], we propose to utilize 
texture-related measurements as our fusion quality metrics. 
Haralick [19] first proposed using a co-occurrence matrix to 
calculate various statistical texture properties for an image. 
A co-occurrence matrix calculates the number of occurrences 
of all pairs of gray level which are separated by a distance 
d along a given direction. From the co-occurrence matrix, 
several texture measurements can be computed among which 
are variance and entropy. For evaluation of our wavelet- 
based fusion results, we propose to use the variance of co- 
occurrence matrices as a fusion quality metric. That is, for each 
input and fused image, we calculate a co-occurrence variance 
image based on variances computed from local co-occurrence 
matrices [19], [20]. Since a higher mean image variance is 
associated with a higher amount of texture, an image with a 
higher mean of its variance image will also probably result 
in a more accurate classification. Having more texture in 
our fusion result will indicate that some information was 
gained from each of the input images. While using statistical 
texture measures will tell us how different each fused result is 
compared to input bands, we also need to ensure that our fused 
result contains information from each input band as well. Thus, 
for our wavelet based fusion, another spectral quality metric is 
considered correlation. We calculate correlation of each fused 
band to each of their input bands. The idea is that each fused 
band need to be highly correlated with its input bands while 
having more texture associated with it. 

VIII. RESULTS 
This section summarizes the fusion results obtained from 

our PCA, wavelet-based fusion, and cokriging experiments. 
For PCA and wavelet-based fusion experiments, as a qualita- 
tive validation of the fusion methods, we first performed clus- 
tering using k-means algorithm with k = 7 and a maximum of 
15 iterations on both results and input. Then, we evaluated the 
clustering results by calculating statistical texture measures as 

TABLE III 
MEAN OF VARIANCE IMAGES OF ALI, HYPERION, AND FUSED BANDS IN 

FUSION THROUGH PCA, v= MEAN OF VARIANCE IMAGE 

ALI V I Hyp V I Fused V 
143.98 I 137.64 I 180.10 

proposed by Haralick and mentioned in Section VII. For the 
cokriging experiment we show preliminary results of fusion 
performed on one pixel in the spectral domain. 

For PCA, we performed clustering on the first set of PCs 
that contained more than 99% of the original multispectral 
image information, that is, the first 3 PCs of ALI data, the 
first 7 PCs of Hyperion data, and the lirst 9 PCs of fused 
data. Results are shown in Figure 3. When using PCA, only 
the overall mean of variance images can be calculated. Table 
111 shows that this overall variance of the PCA-fused image 
has increased compared to the PCA results obtained only from 
ALI or Hyperion data. 

Fig. 3. 
Separately and Classification of Their PCA Based Fusion Results 

First 3 PCs First 7 PCs First 9 PCs 
of ALI of Hvuerion of Fused 

Classifications of PCA Results of ALI and Hyperion Images 

Figures 4 and 5 show k-means classifications performed 
on all 9 bands of ALI, the chosen 9 bands of Hyperion 
in both wavelet based fusion experiments, and the 9 bands 
of fused results respectively. Tables Tv and VI show mean 
values of variance images calculated as pointed out in Section 
VII. We see that in both experiments, the first 7 fused bands 
have higher variance than each of their associated ALI and 
Hyperion input bands. We also see in Table V, that the 
lirst 7 fused bands in both experiments are highly correlated 
with their associated Hyperion band. Thus, while the spectral 
quality of high spectral resolution data is saved in fused bands, 
fused bands have more texture associated with them. In both 
experiments, band 8 of fused data has more variance than its 
input Hyperion band but less that its associated ALI band. This 
is partly due to the fact that ALI band 8 is rather noisy and 
corrupted. In both cases no improvement was gained in fused 



Fig. 4. Classifications of Input ALI and Hyperion Images to Wavelet Based 
Fusion Experiment 1 and Its Result 

9 Bands of ALI 9 Hyperion 9 Fused Bands 
Bands 

Fig. 5. Classifications of Input ALI and Hyperion Images to Wavelet Based 
Fusion Experiment 2 and Its Result 

9 Bands of ALI 9 Hyperion 9 Fused Bands 
Bands 

band 9. In the first experiment, there is a greater increase in 
variance images of the fused results than that of experiment 2. 
This is why we see more detailed clustering results in Figure 
4 than in Figure 5. The overall varinace quantities confirm this 
since in the second experiment we see overall improvement 
over Hyperion data only and not over ALL In general, wavelet- 
based fusion works better on the first 7 bands. However, this 
method can be used to reduce the effect of noisy data in ALI 
data in bands 8 and 9. 

In our preliminary results for the cokriging, Figures 6,7, and 
8 show that as we increase the number of wavelengths at which 
the ALI data is interpolated, we can construct ALI bands 
which mimic Hyperion's performance while incorporating 
ALI's values. Of course, one will choose intervals of interest 
to perform this cokriging so that instead of dealing with 242 

TABLE N 
MEAN OF VARIANCE IMAGES OF ALI, HYPERION, AND FUSED BANDS IN 

WAVELET BASED FUSION, EXPERIMENT I 

139.51 
193.03 
169.97 
168.54 

344.53 

Overall 
179.73 

an of 

Hg 

Hzs 
H43 

Hyp 

H16 
H23 

H50 
H106 
H160 

158.87 
192.84 
176.24 
180.82 

159.96 

- 
V 

113.84 
138.72 
183.63 
212.16 
200.32 
208.95 
197.47 
261.85 
240.52 

195.27 

- 

__. 

- 
TABLE V 

CORRELATION OF FUSED DATA WITH HIGH SPECTRAL RESOLUTION 
INPUT FOR WAVELET-BASED FUSION, EXPERIMENT 1 AND 2 

Fused Pairs 

H25 F3 

0.913 H45 F5 0.934 
0.914 
0.901 
0.679 
0.826 

bands of Hyperion, or only 9 bands of ALI, one can get a full 
spectrum coverage through about 17 ALI bands (9 original 
and about 8 or more fused ALI bands). 

Ix. CONCLUSION AND FUTURE WORK 
Experiments for the fusion of ALI and Hyperion data 

using PCA, wavelet-based fusion, and cokriging have been 
performed. Fusion results based on PCA and wavelets show 
that texture, measured through variance, can be improved 
through fusion, while preserving almost all the input origi- 
nal information. Variance and correlation measurements were 
utilized to validate the results and form the basis for a new 

TABLE VI 
MEAN OF VARIANCE IMAGES OF ALI, HYPERION, AND FUSED BANDS IN 

WAVELET BASED FUSION, EXPERIMENT 2 

ALI 
A i  
A2 
A3 
A4 
A5 
As 
A7 
As 
A9 

Overall 
V 

V= Mean of 

179.73 I 

217.32 
169.88 
166.87 

190.52 205.10 
184.84 173.18 

165.34 I I 173.77 

V 
101.65 
118.27 
176.30 
225.68 
182.35 
184.36 
197.00 



Fig. 6. Fusion by Cokriging ALI: Estimating 1 ALI Value in Center of Each 
Wavelength Interval Where ALI Data is Missing 

Fig. 7. Fusion by Cokriging: Estimating up to 3 ALI Values Each Wavelength 
Interval Where ALI Data is Missing 

wavelength (nm) I 

Fig. 8. Fusion by Cokriging: Estimating ALI Values in All Hyperion Interval 
Centers Where ALI Data is Missing 

wavelength [nmr 

fusion quality metrics definition. 
A new fusion approach involving cokriging was also pre- 

sented, and preliminary fusion experiments were performed 
with the intent of improving the spectral resolution of ALI 
data by fusing ALI with Hyperion data. Results show that 
new fused ALI bands can be created and mimic the spectral 
behavior of the Hyperion spectral signature. 

Future work will include validation of all of the previous 
results using ground truth, generalization of the cokriging 
experiments to spatial and spectral fusions, and new fusion 
quality metrics definitions. 

In particular, it would be extremely useful to design a 
quantitative fusion metric which can deal with input images of 
different sizes (different spatial resolutions) as well as being 
able to come up with a fusion quality index for multispectral 
fused images. 
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